Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Math Biosci Eng ; 20(2): 3324-3341, 2023 01.
Article in English | MEDLINE | ID: covidwho-2201223

ABSTRACT

The initial COVID-19 vaccinations were created and distributed to the general population in 2020 thanks to emergency authorization and conditional approval. Consequently, numerous countries followed the process that is currently a global campaign. Taking into account the fact that people are being vaccinated, there are concerns about the effectiveness of that medical solution. Actually, this study is the first one focusing on how the number of vaccinated people might influence the spread of the pandemic in the world. From the Global Change Data Lab "Our World in Data", we were able to get data sets about the number of new cases and vaccinated people. This study is a longitudinal one from 14/12/2020 to 21/03/2021. In addition, we computed Generalized log-Linear Model on count time series (Negative Binomial distribution due to over dispersion in data) and implemented validation tests to confirm the robustness of our results. The findings revealed that when the number of vaccinated people increases by one new vaccination on a given day, the number of new cases decreases significantly two days after by one. The influence is not notable on the same day of vaccination. Authorities should increase the vaccination campaign to control well the pandemic. That solution has effectively started to reduce the spread of COVID-19 in the world.


Subject(s)
COVID-19 , Humans , COVID-19 Vaccines , Immunization Programs , Linear Models , Vaccination
2.
Alexandria Engineering Journal ; 2022.
Article in English | ScienceDirect | ID: covidwho-2104239

ABSTRACT

The two-parameter classical Weibull distribution is commonly implemented to cater for the product’s reliability, model the failure rates, analyze lifetime phenomena, etc. In this work, we study a novel version of the Weibull model for analyzing real-life events in the sports and medical sectors. The newly derived version of the Weibull model, namely, a new cosine-Weibull (NC-Weibull) distribution. The importance of this research is that it suggests a novel version of the Weibull model without adding any additional parameters. Different distributional properties of the NC-Weibull distribution are obtained. The maximum likelihood approach is implemented to estimate the parameters of the NC-Weibull distribution. Finally, three applications are analyzed to prove the superiority of the NC-Weibull distribution over some other existing probability models considered in this study. The first and second applications, respectively, show the mortality rates of COVID-19 patients in Italy and Canada. Whereas, the third data set represents the injury rates of the basketball players collected during the 2008–2009 and 2018–2019 national basketball association seasons. Based on four selection criteria, it is observed that the NC-Weibull distribution may be a more suitable model for considering the sports and healthcare data sets.

3.
Mathematical Problems in Engineering ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-2064347

ABSTRACT

The exponentiated generalized Gull alpha power exponential distribution is an extension of the exponential distribution that can model data characterized by various shapes of the hazard function. However, change point problem has not been studied for this distribution. In this study, the change point detection of the parameters of the exponentiated generalized Gull alpha power exponential distribution is studied using the modified information criterion. In addition, the binary segmentation procedure is used to identify multiple change point locations. The assumption is that all the parameters of the EGGAPE distributions are considered changeable. Simulation study is conducted to illustrate the power of the modified information criterion in detecting change point in the parameters with different sample sizes. Three applications related to COVID-19 data are used to demonstrate the applicability of the MIC in detecting change point in real life scenario.

4.
Complexity ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-2064320

ABSTRACT

Statistical distributions have great applicability for modeling data in almost every applied sector. Among the available classical distributions, the inverse Weibull distribution has received considerable attention. In the practice of distribution theory, numerous methods have been studied and suggested/introduced to increase the flexibility level of the traditional probability distributions. In this paper, we implement different distribution methods to obtain five new different versions of the inverse Weibull model. The new modifications of the inverse Weibull model are called the logarithm transformed-inverse Weibull, a flexible reduced logarithmic-inverse Weibull, the weighted TX-inverse Weibull, a new generalized-inverse Weibull, and the alpha power transformed extended-inverse Weibull distributions. To illustrate the flexibility and applicability of the new modifications of the inverse Weibull model, a biomedical data set is analyzed. The data set consists of 108 observations and represents the mortality rate of the COVID-19-infected patients. The practical application shows that the new generalized-inverse Weibull is the best modification of the inverse Weibull distribution.

SELECTION OF CITATIONS
SEARCH DETAIL